Energy-based analysis of biochemical cycles using bond graphs.
نویسندگان
چکیده
Thermodynamic aspects of chemical reactions have a long history in the physical chemistry literature. In particular, biochemical cycles require a source of energy to function. However, although fundamental, the role of chemical potential and Gibb's free energy in the analysis of biochemical systems is often overlooked leading to models which are physically impossible. The bond graph approach was developed for modelling engineering systems, where energy generation, storage and transmission are fundamental. The method focuses on how power flows between components and how energy is stored, transmitted or dissipated within components. Based on the early ideas of network thermodynamics, we have applied this approach to biochemical systems to generate models which automatically obey the laws of thermodynamics. We illustrate the method with examples of biochemical cycles. We have found that thermodynamically compliant models of simple biochemical cycles can easily be developed using this approach. In particular, both stoichiometric information and simulation models can be developed directly from the bond graph. Furthermore, model reduction and approximation while retaining structural and thermodynamic properties is facilitated. Because the bond graph approach is also modular and scaleable, we believe that it provides a secure foundation for building thermodynamically compliant models of large biochemical networks.
منابع مشابه
Bond Graph Modeling of an Integrated Biological Wastewater Treatment System
Compared with abstract pure mathematical representation of a system and rough engineering drawings, the concept of bond graphs provide us a unique graphical view based on energy interactions among different domains. Bond graphs sit in the middle between equation sets and schematic block graphs, combining most of the advantages from both. The bond graph approach has already been shown to be effe...
متن کاملInvestigation of hydralazine drug adsorption on functionalized single-walled carbon nanotubes by density functional theory (DFT) method
Background: In recent years, advances in nanotechnology presents opportunities to overcome limitations in targeted drug delivery. Nano drug carriers have the ability to change the pharmacokinetics of drugs and can improve efficacy and reduce side effects. The objective of the present work is to study the interaction of Hydralazine with functionalized carbon nanotubes by performing density funct...
متن کاملThermo-economic Analysis of Power Cycles
Exergy analysis is based on combined first and second laws of thermodynamics and is a useful tool to analyze the energy systems in a better and more realistic way than an energy analysis, based on the first law of thermodynamics. Combination of exergy from thermodynamics with conventional concepts from engineering economy which is referred to as thermo-economy (exergo-economy) is a valuable too...
متن کاملComparison of theoretical effects of encapsulation floxuridine anticancer drug with boron nitride nanotube and carbon nanotube with NBO and QTAIM studies
Background: The purpose of using nano-carriers for drugs delivery, such as nanotubes, is slow release of drug and reducing side effects of drugs. Drugs are very active due to their many functional groups. Therefore, reactivity of drug is reduced by being in nanotube field due to electronic resonance of drug with nanotube and it stays longer in body. As a result, less amount of drug is used and ...
متن کاملThe energy and exergy analysis of a novel cogeneration organic Rankine power and two-stage compression refrigeration cycle
The energy crisis in recent years has led to the use of thermodynamic cycles that work based on renewable energies. Low-temperature cycles—such as organic cycles—are suitable strategies for the application of renewable energies. The present study proposes a novel cycle through the integration of a two-stage compression refrigeration cycle with a combined Rankine power and ejector refrigerat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings. Mathematical, physical, and engineering sciences
دوره 470 2171 شماره
صفحات -
تاریخ انتشار 2014